Советы по ремонту квартир, офиса, дома • GORYCH.RU • дизайн интерьера, постройка дачи

Фундамент

Можно ли ставить блоки на фундамент

Содержание

Как сделать плавающий фундамент своими руками?

утопленный грунт;Если грунтовые воды залегают близко к поверхности, можно выполнить работы по устройству так именуемого плавающего фундамента. Пирог такового основания содержит в себе последующие слои (начиная с самого нижнего):

  • песчано-гравийная утрамбованная подушка;
  • бетонное цельное основание;
  • слой пароизоляции;
  • слой термоизоляции;
  • слой гидроизоляции (как правило это полиэтиленовая пленка);
  • армированная бетонная стяжка.

Сама разработка строительства фундамента для дома имеет конкретные особенности для каждого отдельного варианта. Это находится в зависимости от типа грунта, на котором делается строительство дома, особенностей рельефа местности, типа возводимого дома(каркасный, более мощный).

Сам процесс сооружения плавающего фундамента для дома содержит в себе такие этапы:

  • Копка котлована, размеры которого соответствуют размерам грядущего дома. Глубина должна в точности определяться проектом, зависит она не только лишь от того, как близко залегают грунтовые воды, да и где находится точка вымерзания грунта. Дно котлована необходимо утрамбовать, делать это нужно умеренно. Нельзя оставлять участки либо ямы с песком, заполненные влагой, разрыхленные.
  • Дальше строительство фундамента для дома подразумевает укладку песчано-гравийной подушки. Если грунтовые воды на участке находятся очень близко, то рекомендуется использовать ранее геотекстиль, который укладывается по всему дну котлована. Таковой подготовительный слой дозволит выполнить эффективную защиту от вымывания песка. Толщина насыпки для фундамента дома должна составлять 20-30 см, каждый слой насыпки должен непременно увлажняться, потом утрамбовываться и досыпаться до нужного уровня. Использовать для этого можно виброплиту.
  • Дальше для основания каркасного дома (либо хоть какого другого строения) производится заливка бетоном. Применяется раствор обычно марки М100. Определить толщину заливки несложно, обычно хватает 10 см, размеры такой стяжки должны немного превышать габариты самой фундаментной плиты для дома. Перед заливкой необходимо установить опалубку из обычной обрезной деревянной доски.
  • После того как бетон высохнет, сверху с нахлестом на стены укладывается слой гидроизолирующей пленки, все швы которой тщательно запаиваются. Края такой пленки для фундамента дома заворачиваются. Это обеспечивает отличную гидроизоляцию для основания и самого дома. Укладка тепло- и пароизоляции может зависеть от проекта, но чаще всего рекомендуется ее выполнять, особенно если работы проводятся на почвах, где грунтовые воды близко подходят к поверхности. Какой материал для этого выбрать? Лучше всего подходят полимерные пленки и твердые утеплители в виде плит, которые не дают усадки. В проекте обязательно должна находиться информация, какие материалы выбраны и какова их толщина, чтобы можно было вырыть котлован на требуемую глубину.
  • После того как утеплитель уложен, сверху его также накрывает слой полиэтиленовой пленки.

Очередь за железобетонной конструкцией

Если есть необходимость, то все коммуникации прокладываются вместе с сооружением фундамента. Все трубы и прочее проводятся одновременно с устройством каждого слоя, если есть необходимость, применяются специальные защитные гофрированные трубы. Заливка такого основания выполняется за один раз. Если нарушить это правило, то прочность будет крайне низкая, а она важна, когда закладка выполняется на суглинках или на сложных и слабых почвах, где грунтовые воды залегают близко от поверхности.

Теперь осуществляются работы по сооружению монолитной железобетонной плиты. Блоки не используются, сначала выполняется армирование при помощи стальной арматуры в два пояса, после чего бетоном все пространство заливается. Для этого необходима опалубка, для раствора используется бетон с маркой М300 (не меньше), класс его должен составлять В22,5. После заливки фундамента для участка, где грунтовые воды подходят близко к поверхности, надо выждать положенное время для высыхания.

В некоторых случаях в качестве плавающего фундамента рекомендуется использовать дополнительно бетонные блоки, которые монтируются на бетонное основание небольшой толщины в виде опорных столбов, но делается это редко. Используя такие блоки для основания, стоимость работ вы только увеличиваете, так как их укладка сопряжена с некоторыми сложностями.

Да и прочность фундамента, для которого используются бетонные блоки, не слишком велика. Лучше всего применить вариант, при котором такой сборный фундамент, для изготовления которого применяются блоки, полностью заливается бетоном после окончания работ, затем покрывается слоем жидкой гидроизолирующей резины.

Но подобный вариант, при котором используются блоки, по стоимости сравним с обычным монолитным, а прочность у них практически одинакова. Именно поэтому, когда встает вопрос, какой фундамент делать, железобетонный монолитный или для которого используются бетонные блоки с последующей заливкой и гидроизоляцией, предпочтение отдается первому.

Варианты фундамента при близком расположении грунтовых вод

Какой же фундамент нужен на участке, если грунтовая вода находится близко к поверхности? Ответ один – это специальный плавающий тип фундамента. Такое основание предназначено для укладки на слабонесущих грунтах, на насыпной почве, на тяжелом пучинистом грунте и при условиях, если грунтовые воды залегают невысоко, то есть имеется вероятность подтопления конструкции фундамента, подвала, цокольного этажа, а это отрицательно сказывается на всем строении.

Если грунтовые воды залегают близко от уровня почвы, то именно плавающий фундамент позволяет надежно защитить всю конструкцию от разрушений, вероятных деформаций под негативным воздействием постоянной влаги.

Ленточный фундамент в данном случае ставить не рекомендуется, так как влага под основанием дома должна распределяться равномерно, а не выдавливаться из-под одних участков и поступать в другие. Ленточный фундамент, несмотря на все свои преимущества, при устройстве на таком типе грунта создает излишнее гидростатическое давление, то есть имеется опасность его перекосов, деформаций, по стенам конструкции начнут идти трещины. Использовать ленточный фундамент можно тогда, когда уровень грунтовых вод достаточно высокий, в остальных случаях его применять не рекомендуется.

Иногда такую конструкцию можно ставить и на суглинке, но необходимо обеспечить правильную гидроизоляцию. Если вы решили использовать ленточный вариант фундамента, проведите предварительные геологические исследования, которые покажут, насколько это реально.

Устройство такого фундамента для каркасного дома и любого другого строения довольно простое, заключается оно в заливке монолитной бетонной плиты, которая армируется при помощи стальных прутьев. Технология устройства такого основания для каркасного дома небольшой площади, когда грунтовые воды залегают близко к поверхности, проста: необходима копка траншеи с глубиной в 60 см, на дно которой насыпается слой щебня на 10 см и слой песка на 50 см.

После этого получившаяся подушка пропитывается водой, усаживается и досыпается до необходимого уровня. Далее на уровне грунта следует выложить столбы из кирпича, которые имеют ширину в полтора-два кирпича (можно применять и бетонные блоки), сверху покрываются рубероидом, простой деревянной доской, защищенной от гниения (такой слой должен составлять 40 мм).

Можно ли использовать свайный фундамент?

Чаще всего свайный фундамент выполняется при помощи специальных винтовых свай, отличающихся высочайшей несущей способностью. Связано это с тем, что при завинчивании сваи в грунт происходит не разрыхление ее, как при использовании обычных забивных свай, а уплотнение, то есть земля между стальными винтами утрамбовывается, делает опору надежной и устойчивой. Вопрос, какие именно трубы лучше для такого основания, разрешается легко.

Это стальные, которые имеют цинковое покрытие для защиты от коррозии (если необходимо, то дополнительно выполняются и другие типы защиты). На конце трубы, которая углубляется в почву, имеются винтовые лопасти, позволяющие надежно вкрутить сваю.Свайный фундамент рекомендуется для сложных грунтов, пучинистых почв, можно применять его для близко расположенных грунтовых вод, плывунов. К примеру, такие города, как Санкт-Петербург и Венеция, строения имеют именно на свайных фундаментах, которые отлично защищают дома от влаги, придавая им прочность и надежность.

Определить место для строительства довольно просто, так как подобный вариант основания можно ставить практически в любых условиях. Устройство фундамента при помощи винтовых свай экономически выгодно, тяжелая строительная техника совершенно не нужна. Нельзя применять такой тип только для скальных грунтов.

Как сделать плавающий фундамент своими руками?

Если грунтовые воды залегают близко к поверхности, можно выполнить работы по устройству так называемого плавающего фундамента. Пирог такого основания включает в себя следующие слои (начиная с самого нижнего):

  • утопленный грунт;
  • песчано-гравийная утрамбованная подушка;
  • бетонное монолитное основание;
  • слой пароизоляции;
  • слой теплоизоляции;
  • слой гидроизоляции (обычно это полиэтиленовая пленка);
  • армированная бетонная стяжка.

Сама технология строительства фундамента для дома имеет определенные особенности для каждого отдельного случая. Это зависит от того, на каком типе грунта производится строительство дома, какие особенности рельефа местности наблюдаются, какой дом ставится (каркасный, более массивный).

Сам процесс сооружения плавающего фундамента для дома включает в себя такие этапы:

  • Копка котлована, размеры которого соответствуют размерам будущего дома. Глубина должна в точности определяться проектом, зависит она не только от того, как близко залегают грунтовые воды, но и где находится точка промерзания грунта. Дно котлована нужно утрамбовать, делать это надо равномерно. Нельзя оставлять участки или ямы с песком, заполненные влагой, разрыхленные.
  • Далее строительство фундамента для дома предполагает укладку песчано-гравийной подушки. Если грунтовые воды на участке находятся слишком близко, то рекомендуется использовать до этого геотекстиль, который укладывается по всему дну котлована. Такой предварительный слой позволит выполнить эффективную защиту от вымывания песка. Толщина насыпки для фундамента дома должна составлять 20-30 см, каждый слой насыпки должен обязательно увлажняться, затем утрамбовываться и досыпаться до необходимого уровня. Использовать для этого можно виброплиту.
  • Далее для основания каркасного дома (или любого другого строения) выполняется заливка бетоном. Применяется раствор обычно марки М100. Определить толщину заливки несложно, обычно хватает 10 см, размеры такой стяжки должны немного превышать габариты самой фундаментной плиты для дома. Перед заливкой необходимо установить опалубку из обычной обрезной деревянной доски.
  • После того как бетон высохнет, сверху с нахлестом на стены укладывается слой гидроизолирующей пленки, все швы которой тщательно запаиваются. Края такой пленки для фундамента дома заворачиваются. Это обеспечивает отличную гидроизоляцию для основания и самого дома. Укладка тепло- и пароизоляции может зависеть от проекта, но чаще всего рекомендуется ее выполнять, особенно если работы проводятся на почвах, где грунтовые воды близко подходят к поверхности. Какой материал для этого выбрать? Лучше всего подходят полимерные пленки и твердые утеплители в виде плит, которые не дают усадки. В проекте обязательно должна находиться информация, какие материалы выбраны и какова их толщина, чтобы можно было вырыть котлован на требуемую глубину.
  • После того как утеплитель уложен, сверху его также накрывает слой полиэтиленовой пленки.

Какой фундамент выбрать при близком расположении грунтовых вод?

Строительство дома может осуществляться практически на любом типе грунта, но для сложных, насыщенных водой следует тщательно подбирать вид основания. Это касается не только вопроса, на какую глубину копать фундамент, чтобы обеспечить его прочность и устойчивость, но и то, каким именно он должен быть.

Сегодня для подобных условий используется всего несколько типов основания. Это бетонные блоки, винтовые сваи, плавающий монолитный фундамент, при этом последний вариант и блоки часто комбинируют. Что предпоHonor, какие виды основания подойдут лучше, если грунтовые воды подходят близко к поверхности почвы?

Какие материалы нужны для работы?

Важным вопросом, когда решается, какой фундамент будет применяться, является подготовка материалов для работы. Для монолитного плавающего основания, монтаж которого рассмотрен, необходимо приготовить:

  • инструмент для копки котлована. Используется строительная техника, глубина копки определяется высотой, на которую залегают грунтовые воды. При этом соблюдается такое условие: чем ближе к поверхности почвенные воды, тем меньше будет высота фундаментной плиты (это важно не только когда используется бетонная заливка, но и в том случае, если для строительства основания будущего дома применяются бетонные блоки);
  • песок и гравий для засыпки;
  • виброплита для утрамбовки слоя (обязательна, если основание выполняется на насыщенных влагой грунтах);
  • полиэтиленовая пленка для гидроизоляции;
  • пароизоляционная мембрана;
  • утеплитель (при выборе материала, который будет использоваться, предпочтение обычно отдается пенопластовым плитам, они не дают усадки, не подвержены отрицательному влиянию, которое оказывают грунтовые воды);
  • бетонный раствор для заливки;
  • стальная арматура и вязальная проволока для армирования;
  • бетонные блоки (нужны не всегда, выше указано, какой именно вариант такого монтажа может применяться).

Варианты фундамента при близком расположении грунтовых вод

Какой же фундамент нужен на участке, если грунтовая вода находится близко к поверхности? Ответ один – это специальный плавающий тип фундамента. Такое основание предназначено для укладки на слабонесущих грунтах, на насыпной почве, на тяжелом пучинистом грунте и при условиях, если грунтовые воды залегают невысоко, то есть имеется вероятность подтопления конструкции фундамента, подвала, цокольного этажа, а это отрицательно сказывается на всем строении.

Устройство такого фундамента для каркасного дома и любого другого строения довольно простое, заключается оно в заливке монолитной бетонной плиты, которая армируется при помощи стальных прутьев. Технология устройства такого основания для каркасного дома небольшой площади, когда грунтовые воды залегают близко к поверхности, проста: необходима копка траншеи с глубиной в 60 см, на дно которой насыпается слой щебня на 10 см и слой песка на 50 см.

После этого получившаяся подушка пропитывается водой, усаживается и досыпается до необходимого уровня. Далее на уровне грунта следует выложить столбы из кирпича, которые имеют ширину в полтора-два кирпича (можно применять и бетонные блоки), сверху покрываются рубероидом, простой деревянной доской, защищенной от гниения (такой слой должен составлять 40 мм).

Ленточный фундамент в данном случае ставить не рекомендуется, так как влага под основанием дома должна распределяться равномерно, а не выдавливаться из-под одних участков и поступать в другие. Ленточный фундамент, несмотря на все свои преимущества, при устройстве на таком типе грунта создает излишнее гидростатическое давление, то есть имеется опасность его перекосов, деформаций, по стенам конструкции начнут идти трещины.

READ  Арболитовые блоки своими руками в домашних условиях

Использовать ленточный фундамент можно тогда, когда уровень грунтовых вод достаточно высокий, в остальных случаях его применять не рекомендуется. Иногда такую конструкцию можно ставить и на суглинке, но необходимо обеспечить правильную гидроизоляцию. Если вы решили использовать ленточный вариант фундамента, проведите предварительные геологические исследования, которые покажут, насколько это реально.

Очередь за железобетонной конструкцией

Теперь осуществляются работы по сооружению монолитной железобетонной плиты. Блоки не используются, сначала выполняется армирование при помощи стальной арматуры в два пояса, после чего бетоном все пространство заливается. Для этого необходима опалубка, для раствора используется бетон с маркой М300 (не меньше), класс его должен составлять В22,5. После заливки фундамента для участка, где грунтовые воды подходят близко к поверхности, надо выждать положенное время для высыхания.

Если есть необходимость, то все коммуникации прокладываются вместе с сооружением фундамента. Все трубы и прочее проводятся одновременно с устройством каждого слоя, если есть необходимость, применяются специальные защитные гофрированные трубы. Заливка такого основания выполняется за один раз. Если нарушить это правило, то прочность будет крайне низкая, а она важна, когда закладка выполняется на суглинках или на сложных и слабых почвах, где грунтовые воды залегают близко от поверхности.

В некоторых случаях в качестве плавающего фундамента рекомендуется использовать дополнительно бетонные блоки, которые монтируются на бетонное основание небольшой толщины в виде опорных столбов, но делается это редко. Используя такие блоки для основания, стоимость работ вы только увеличиваете, так как их укладка сопряжена с некоторыми сложностями.

Да и прочность фундамента, для которого используются бетонные блоки, не слишком велика. Лучше всего применить вариант, при котором такой сборный фундамент, для изготовления которого применяются блоки, полностью заливается бетоном после окончания работ, затем покрывается слоем жидкой гидроизолирующей резины.

Но подобный вариант, при котором используются блоки, по стоимости сравним с обычным монолитным, а прочность у них практически одинакова. Именно поэтому, когда встает вопрос, какой фундамент делать, железобетонный монолитный или для которого используются бетонные блоки с последующей заливкой и гидроизоляцией, предпочтение отдается первому.

Можно ли использовать свайный фундамент?

Чаще всего свайный фундамент выполняется при помощи специальных винтовых свай, отличающихся высочайшей несущей способностью. Связано это с тем, что при завинчивании сваи в грунт происходит не разрыхление ее, как при использовании обычных забивных свай, а уплотнение, то есть земля между стальными винтами утрамбовывается, делает опору надежной и устойчивой. Вопрос, какие именно трубы лучше для такого основания, разрешается легко.

Это стальные, которые имеют цинковое покрытие для защиты от коррозии (если необходимо, то дополнительно выполняются и другие типы защиты). На конце трубы, которая углубляется в почву, имеются винтовые лопасти, позволяющие надежно вкрутить сваю.Свайный фундамент рекомендуется для сложных грунтов, пучинистых почв, можно применять его для близко расположенных грунтовых вод, плывунов.

К примеру, такие города, как Санкт-Петербург и Венеция, строения имеют именно на свайных фундаментах, которые отлично защищают дома от влаги, придавая им прочность и надежность.

Определить место для строительства довольно просто, так как подобный вариант основания можно ставить практически в любых условиях. Устройство фундамента при помощи винтовых свай экономически выгодно, тяжелая строительная техника совершенно не нужна. Нельзя применять такой тип только для скальных грунтов.

12.2.6. Сейсмостойкость свайных фундаментов (ч.1)

Область применения свайных фундаментов в сейсмических районах в основном та же, что и в несейсмических, т.е. свайные фундаменты в условиях сейсмики применяются в аналогичных грунтах и для тех же нагрузок на фундаменты, что и в несейсмических районах. Как и в статических условиях, для принятия окончательного варианта фундамента для сейсмических районов необходимо провести технико-экономическое сравнение вариантов.

При проектировании свайных фундаментов в сейсмических районах нижние концы свай следует опирать на скальные грунты, крупно-обломочные грунты, плотные и средней плотности песчаные грунты, твердые, полутвердые и тугопластичные глинистые грунты. Опирание нижних концов свай в сейсмических районах на рыхлые водонасыщенные пески, глинистые грунты мягкопластичной, текучепластичной и текучей консистенции не допускается.

Опирание свай на наклонные пласты скальных и крупнообломочных пород допускается в том случае, если устойчивость при сейсмических воздействиях массива грунта, расположенного на указанных породах, обеспечивается не за счет свайного фундамента и если при этом исключается возможность проскальзывания нижних концов свай. Допускается опирание свай на плотные и средней плотности водонасыщенные пески, при этом их несущая способность, как правило, должна определяться по результатам полевых испытаний свай на имитированные сейсмические воздействия.

Величина заглубления в грунт свай в сейсмических районах должна быть не менее 4 м, за исключением случаев их опирания на скальные грунты.

Набивные сваи в сейсмических районах следует устраивать в маловлажных устойчивых связных грунтах при диаметре свай не менее 40 см и отношении их длины к диаметру не более 25. При этом необходимо вести строгий контроль за качеством изготовления свай, гарантирующий точное соответствие их формы и размеров с проектом. Как исключение допускается прорезание слоев водонасыщенных грунтов с применением извлекаемых обсадных труб или глинистого раствора. В структурно-неустойчивых грунтах применять набивные сваи можно только с обсадными оставляемыми трубами. Армирование набивных свай в сейсмических районах является обязательным, при этом минимальный процент армирования должен приниматься равным 0,05.

При проектировании фундаментов из набивных свай в сейсмических районах предпочтение следует отдавать набивным сваям, при изготовлении которых в их основание втрамбовывают щебень, гравий, жесткий бетон и т.п.

Расчет свайных фундаментов зданий и сооружений с учетом сейсмических воздействий производится на особое сочетание нагрузок (включая сейсмическое воздействие) по предельному состоянию первой группы и предусматривает:

  • определение несущей способности свай на вертикальную нагрузку;
  • проверку свай по сопротивлению материала на совместное действие расчетных усилий: нормальной силы, изгибающего момента и перерезывающей силы;
  • проверку устойчивости сваи по условию ограничения давления, оказываемого на грунт боковыми поверхностями сваи.

Для фундаментов с высоким свайным ростверком расчетные значения сейсмических сил следует определять как для зданий или сооружений с гибкой нижней частью, увеличивая коэффициент динамичности βi (определяемый согласно требованиям главы СНиП II-7-81) в 1,5 раза, если период колебаний основного тона составляет 0,4 с и более. При этом значение коэффициента динамичности βi должно быть не более 3 и не менее 1,2.

Для свай-стоек несущая способность на действие вдавливающей нагрузки определяется так же, как и в условиях статики, без введения понижающих коэффициентов.

Несущая способность Ф p c забивной призматической и набивной сваи, работающей на осевую сжимающую нагрузку, с учетом сейсмических воздействий определяется по формуле

где γс — коэффициент условий работы сваи в грунте, принимаемый равным 1; R — расчетное сопротивление грунта под нижним концом сваи; Ap — площадь опирания на грунт сваи, принимаемая по площади поперечного сечения сваи брутто или по площади поперечного сечения камуфлетного уширения по его наибольшему диаметру; up — наружный периметр поперечного сечения сваи; It — расчетное сопротивление i.го слоя грунта основания па боковой поверхности сваи (учитывается, начиная с глубины HP; lpi — толщина i.го слоя грунта, соприкасающегося с боковой поверхностью; γeq, γeqi — коэффициенты условий работы, учитывающие влияние сейсмических колебаний на напряженное состояние грунта под нижним концом и на боковой поверхности сваи в i.м слое грунта (табл. 12.8); HP — глубина, до которой не учитывается сопротивление грунта на боковой поверхности сваи; — глубина погружения сваи в грунт; γR, γf — коэффициенты условий работы грунта соответственно под нижним концом и на боковой поверхности сваи, учитывающие влияние способа погружения или устройства свай на расчетные сопротивления грунта.

Глубина, до которой не учитывается сопротивление грунта на боковой поверхности сваи, определяется по формулам:

для набивной сваи ( HP принимается не боле ξ1/α1 )

Фундаменты при сейсмических воздействиях

Проектирование фундаментов при сейсмических воздействиях следует производить в соответствии с требованиями СП 14.13330.2011 «Строительство в сейсмических районах. Актуализированная редакция СНиП II-7-81».

Сейсмические воздействия на фундамент обусловлены зем­летрясениями, происходящими в результате тектонических раз­ломов в земной коре. От гипоцентра во всех направлениях рас­пространяются упругие колебания, характеризуемые сейсмичес­кими волнами (продольными, поперечными и поверхностными). Сейсмические воздействия вызывают колебания зданий и соору­жений, которые приводят к появлению в элементах надземных конструкций сил инерции. На величину последних решающее влияние оказывает интенсивность землетрясения, измеряемая балльностью.

Сейсмические воздействия, как и любые динамического ха­рактера нагрузки на основания, приводят к изменению свойств грунтов: увеличивается сжимаемость, особенно несвязных грун­тов; уменьшается их предельное сопротивление сдвигу, вследствие вызванного вибрацией уменьшения трения между частицами. Импульсные воздействия средней величины могут вызвать допол­нительные осадки и просадки оснований, а импульсы значитель­ной величины – разрушение структуры грунтов, уменьшение их прочности, потерю устойчивости оснований. При определенных условиях может происходить разжижение водонасыщенных пес­чаных оснований, приводящее к полному исчерпыванию их несу­щей способности. Эти изменения строительных свойств грунтов и специфический характер взаимодействия сооружения с основа­нием определяют особенности проектирования фундаментов в условиях сейсмических воздействий.

В России принята 12-балльная шкала оценки силы землетря­сения. Вся территория России поделена на отдельные районы по сейсмичности, но даже в пределах одного района сейсмичность может быть различной в зависимости от грунтовых условий.

Во многих районах выполнено микросейсмирование (повышение или понижение сейсмичности на 1 балл, которое санкционируется Госстроем).

Сейсмичность площадки в зависимости от категории грунта приведена в табл. 5.1. Сейсмические воздействия при проектировании учитываются при интенсивности сейсмических колебаний 7, 8 и 9 баллов. При интенсивности более 9 баллов строительство возможно только по разрешению вышестоящих органов в соответствии с утвержденными требованиями.

По сейсмическим свойствам грунты разделяются на три категории:

Категория грунта по сейсмическим свойствам Сейсмичность площадки строительства, баллы при сейсмичности района
I
II
III

I категория: скальные грунты всех видов (в том числе вечномерзлые и вечномерзлые оттаявшие); невыветрелые и слабовыветрелые; крупнообломочные грунты плотные маловлажные из магматических пород, содержащие до 30 % песчано-глинистого заполнителя; выветрелые и сильновыветрелые скальные и нескальные твердомерзлые (вечномерзлые) грунты при температуре – 2 0 С и ниже при строительстве и эксплуатации по принципу 1 (сохранение грунтов основания в мерзлом состоянии);

II категория: скальные грунты выветрелые и сильновыветрелые (в том числе, вечномерзлые, кроме отнесенных к I категории); крупно-обломочные грунты (за исключением отнесенных к I категории); пески гравелистые, крупные и средней крупности, плотные и средней плотности маловлажные и влажные; пески мелкие и пылеватые плотные и средней плотности маловлажные; глинистые грунты с показателем текучести IL £ 0,5 при коэффициенте пористости с 0 С при строительстве и эксплуатации по принципу 1;

III категория: пески рыхлые независимо от влажности и крупности; пески гравелистые, крупные, средней крупности плотные и средней плотности водонасыщенные; пески мелкие и пылеватые плотные и средней плотности, влажные и водонасыщенные; глинистые грунты с показателем текучести IL 0,5; глинистые грунты с показателем текучести IL £ 0,5 при коэффициенте пористости е ³ 0,9 для глин и суглинков и е ³ 0,7 – для супесей; вечномерзлые нескальные грунты при строительстве и эксплуатации по принципу II (допущение оттаивания грунтов основания).

При неоднородном составе грунты площадки строительства относятся к более неблагоприятной категории грунта по сейсмическим свойствам, если в пределах 10-метровой толщи грунта (считая от планировочной отметки) слой, относящийся к этой категории, имеет суммарную толщину более 5 м.

Расчет фундаментных конструкций и их оснований выполняют на основное и особое сочетание нагрузок, причем в последнее обязательно включается сейсмическая нагрузка. Расчетную сейсми­ческую нагрузку получают в результате динамического расчета всего здания на колебания и прикладывают в точках расположения масс элементов конструкций.

При динамическом расчете учитывают массу отдельных элемен­тов здания, сейсмичность района, формы собственных колебаний, особенности колебаний сооружения, тип грунтовых условий, конст­руктивное решение сооружения и характер допускаемых поврежде­ний и дефектов. После получения сейсмических нагрузок на основа­нии принципа Даламбера проводят статический расчет конструкций здания в предположении совместного действия сейсмической и ста­тической нагрузки.

При проектировании и строительстве в сейсмических районах глубину заложения фундаментов в грунтах I и II категорий назнача­ют как для несейсмических районов, но не менее 1 м; грунты III категории требуют предварительного искусственного улучшения.

Фундаменты зданий и их отдельных отсеков рекомендуется за­кладывать на одном уровне во избежание изменения частоты со­бственных колебаний. В зданиях повышенной этажности следует увеличивать глубину заложения с помощью устройства дополни­тельных подземных этажей.

При прохождении сейсмических волн поверхность грунта может испытывать растяжение и сжатие в различных направлениях, что может вызвать подвижку фундаментов относительно друг друга, поэтому для исключения подвижки и устойчивости фундаментов рекомендуется возводить сплошные плитные фундаменты или не­прерывные фундаменты из перекрестных лент (рис. 5.3, а), устра­иваемых в сборном или монолитном варианте. Для усиления сбор­ных фундаментов по верху подушки укладывают арматурные сетки и устраивают перевязку блоков в углах и пересечениях, а при сейсмичности 9 баллов армируют все сопряжения стен подвалов. Фундаменты каркасных зданий допускается устанавливать на от­дельные фундаменты, которые соединяются друг с другом железо­бетонными вставками (рис. 5.3, б).

Для предотвращения подвижки здания по обрезу фундамента гид­роизоляцию стен необходимо выполнять в виде цементного слоя. Применение гидроизоляции на битумной основе не разрешается.

При использовании свайных фундаментов необходима жесткая заделка свай в непрерывный ростверк для восприятия горизон­тальных усилий, возникающих при землетрясениях, при этом следу­ет стремиться опирать нижние концы свай на плотные грунты. Влияние сейсмических воздействий на работу свайных фундаментов учитывают с помощью понижающих коэффициентов условий рабо­ты, при расчете несущей способности основания по боковой поверх­ности и под острием сваи.

Самыми неблагоприятными основаниями являются водонасыщенные пески, способные разжижаться в условиях сейсмических воздействий и приводить к провальным осадкам зданий, поэтому их следует использовать в качестве оснований только после предвари­тельного уплотнения вибрированием, песчаными сваями или каким-либо другим способом.

Проектирование и устройство фундаментов с учетом сейсмичес­ких воздействий гарантируют сохранность сооружения при условии, если и надземная часть здания возведена с учетом данных воздейст­вий.

Общие сведения о сейсмических воздействиях

Сейсмическая активность земли проявляется на обширной части СССР. Общая площадь районов, подверженных землетрясениям, составляет около 28% территории страны.

READ  Как правильно разметить фундамент под баню

Подавляющее большинство землетрясений возникает в результате тектонических процессов. Такие землетрясения наиболее часты (90% всех землетрясений) и достигают значительной силы. Происходящие вблизи действующих вулканов землетрясения охватывают небольшие территории. Они намного слабее тектонических. Еще меньшей силой обладают местные землетрясения, возникающие в результате горных обвалов, оползней, провалов карстовых полостей, шахтных и других выработок.

Землетрясения возникают, как правило, в определенных зонах (сейсмических), где продолжаются горообразовательные процессы. В этих зонах земная кора расчленена тектоническими разломами на отдельные массивы, испытывающие интенсивные взаимные смещения. Вызванные ими нарушения происходят по существующим или по вновь образовавшимся разломам.

Находящаяся в глубине земли область нарушения коры является очагом (гипоцентром) землетрясения. Проекция этого очага из центра земли на ее поверхность называется эпицентром землетрясения. Очаги обычно имеют вытянутую вдоль разломов форму. Их размеры изменяются от нескольких метров до десятков километров и в основном предопределяют силу землетрясения. При разрушительных землетрясениях очаги в большинстве случаев располагаются в толще земной» коры на глубине 10—50 км и более от ее поверхности.

В районе землетрясения каждая точка земли испытывает последовательное воздействие волн разного вида, поэтому колебания грунта при землетрясениях носят сложный пространственный характер. Из-за этого сейсмические силы могут иметь любое направление в пространстве и к тому же быть переменными по направлению, скорости и величине.

Продолжительность сейсмического импульса и вызываемых им колебаний грунта измеряется десятками секунд, а иногда несколькими минутами. Наиболее опасное воздействие землетрясения происходит в первые 20—40 с, чаще всего с первым мощным импульсом и следующим за ним сейсмическим колебанием грунта.

Для обеспечения достаточной надежности зданий и сооружений, возводимых в сейсмических районах, прежде всего необходимо знать силу землетрясения, которую обычно оценивают по общему разрушительному эффекту, характеризуемому сейсмическими баллами по соответствующей шкале.

Известно много сейсмических шкал, предложенных в разных странах и в разные годы. В СССР с 1952 г. принята 12-балльная сейсмическая шкала (ГОСТ 6249—52), составленная на основе разработок Института физики Земли АН СССР. В качестве классификационных признаков для оценки силы землетрясения в этой шкале приняты: степень повреждения и число поврежденных зданий разных типов; остаточные явления в грунтах и изменение режима подземных вод; прочие признаки (поведение домашних животных, ощущения людей). Кроме этого, каждый балл землетрясения характеризуют определенным диапазоном относительных смещений маятника стандартного сейсмометра и соответствующим ускорением смещения грунта.

С инженерной точки зрения к сейсмическим районам относят районы с силой землетрясения б баллов и выше. На территории СССР землетрясения 10 баллов и выше происходят крайне редко, поэтому в отечественном сейсмостойком строительстве учитывают землетрясения в диапазоне 6—9 баллов.

При характеристике степени повреждения и разрушения частей зданий под легкими повреждениями подразумевают тонкие трещины в штукатурке, кладке печей и т. п.; под значительными повреждениями — трещины в штукатурке и откалывание ее кусков, тонкие трещины в стенах, повреждения дымовых труб отопительных печей и т. п.; под разрушениями — большие трещины в стенах, расслоение каменной кладки, обрушение отдельных участков стен, падение карнизов и парапетов, обвалы штукатурки, падение дымовых труб отопительных печей и т. п.; под обвалами — полное или частичное обрушение стен, перекрытий и т. п.

Здания и сооружения, расположенные в сейсмических районах, подвергаются во время землетрясений воздействию особых факторов, приводящих к появлению дополнительных усилий в конструкции и к изменению условий ее работы. Совокупность этих факторов, вызывающих повреждения сооружений, называют сейсмическим воздействием. Повреждения дорог и дорожных сооружений наблюдаются при силе землетрясения 7 баллов и выше.

Ликвидация сейсмических повреждений земляного полотна, верхнего строения пути или покрытия производится сравнительно простыми техническими средствами и восстановление этих элементов дорог не требует длительного времени. Повреждения мостов и тоннелей приводят к продолжительным перерывам в движении, так как их восстановление связано с необходимостью выполнения длительных и трудоемких работ. По этой причине в нормах сейсмостойкого строительства многих стран для мостов и некоторых других дорожных сооружений предусмотрены повышенные гарантии сейсмостойкости.

Анализ последствий землетрясений показывает, что повреждения мостов происходят вследствие смещения или повреждения пролетных строений либо повреждения опор или же тех и других одновременно. Повреждения опор мостов можно подразделить на две группы: перемещения опор относительно первоначального положения (сдвиги, осадки, наклоны, опрокидывание); нарушения целостности конструкции опор (трещины, разломы, раскрытие швов и т. д.). Повреждения обоих видов нередко возникают одновременно.

Наиболее характерным повреждением устоев является их скольжение (сдвиг) в сторону пролета, часто сопровождаемое их наклоном и осадкой. Такие повреждения весьма распространены, особенно при наличии вокруг фундаментов устоев слабых глинистых грунтов; в единичных случаях деформации устоев могут происходить при землетрясениях силой от 7 баллов. Повреждения устоев являются следствием воздействия увеличившегося давления на них грунта со стороны насыпи, инерционных сил от пролетных строений и самих устоев, а иногда и в результате скольжения наклонно залегающих пластов берегового массива в сторону водотока. Перемещения устоев в сторону пролета часто бывают значительными и могут привести к полному разрушению мостов.

Характерными повреждениями промежуточных опор являются их осадки и наклоны, а иногда горизонтальные перемещения. Отмечены случаи поднятия опор относительно первоначального положения, а также их поворота в горизонтальной плоскости. Осадки и наклоны опор в большинстве случаев наблюдаются при фундаментах мелкого заложения, а также фундаментах из висячих свай, заглубленных в мелкие или пылеватые водонасыщенные пески средней плотности сложения, текучепластичные и текучие супеси, суглинки и глины. При землетрясении 9 баллов и более деформации опор достигают больших величин и являются массовыми. Установлено, что в общем случае осадки и наклоны опор уменьшаются с увеличением глубины заложения фундаментов и размеров их подошвы.

В результате землетрясения 1923 г. в Японии опоры одного моста с фундаментами мелкого заложения на песке осели на 0,5—1,5 м. При этом же землетрясении отмечены осадки фундаментов из висячих деревянных свай до 1,2 м.

В безростверковых опорах при землетрясении возникают трещины в ригелях и местах примыкания стоек к ригелю. В свайных фундаментах с высоким ростверком возникают повреждения в виде горизонтальных или косых трещин в сваях; вблизи заделки свай в ростверк раздробляется бетон, выпучиваются сжатые стержни арматуры.

Анализ характера сейсмических повреждений мостов показывает, что они являются следствием воздействия комплекса факторов, из которых наиболее важны следующие: 1) горизонтальные силы инерции (сейсмические силы), возникающие при колебательных движениях масс сооружения под воздействием колебаний грунтового основания. Эти силы в большинстве случаев считаются основной причиной повреждения сооружений; 2) вертикальные силы инерции (сейсмические силы), вызванные вертикальной составляющей сейсмических колебаний грунта. Эти силы незначительны по сравнению с основными вертикальными нагрузками сооружения, поэтому они редко являются непосредственной причиной повреждения сооружений. Однако такие силы уменьшают запасы устойчивости фундаментов опор против сдвига и опрокидывания; 3) сейсмическое горизонтальное давление грунта на устои мостов; 4) сейсмическое (гидродинамическое) давление воды на промежуточные опоры мостов; 5) значительное снижение несущей способности грунтов, особенно водонасыщенных рыхлых песков и текучих и текуче-пластичных глинистых грунтов. Из-за этого происходят большие осадки и наклоны опор мостов; 6) остаточные деформации природного рельефа в виде оползней, обвалов и т. п.; 7) смещения по плоскостям тектонических нарушений, приводящие к образованию сбросов и сдвигов.

Следует отметить, что большей частью повреждение сооружений происходит в результате одновременного воздействия нескольких из перечисленных причин.

Фундаменты при сейсмических воздействиях

Проектирование фундаментов при сейсмических воздействиях следует производить в соответствии с требованиями СП 14.13330.2011 «Строительство в сейсмических районах. Актуализированная редакция СНиП II-7-81».

Сейсмические воздействия на фундамент обусловлены зем­летрясениями, происходящими в результате тектонических раз­ломов в земной коре. От гипоцентра во всех направлениях рас­пространяются упругие колебания, характеризуемые сейсмичес­кими волнами (продольными, поперечными и поверхностными). Сейсмические воздействия вызывают колебания зданий и соору­жений, которые приводят к появлению в элементах надземных конструкций сил инерции. На величину последних решающее влияние оказывает интенсивность землетрясения, измеряемая балльностью.

Сейсмические воздействия, как и любые динамического ха­рактера нагрузки на основания, приводят к изменению свойств грунтов: увеличивается сжимаемость, особенно несвязных грун­тов; уменьшается их предельное сопротивление сдвигу, вследствие вызванного вибрацией уменьшения трения между частицами. Импульсные воздействия средней величины могут вызвать допол­нительные осадки и просадки оснований, а импульсы значитель­ной величины – разрушение структуры грунтов, уменьшение их прочности, потерю устойчивости оснований. При определенных условиях может происходить разжижение водонасыщенных пес­чаных оснований, приводящее к полному исчерпыванию их несу­щей способности. Эти изменения строительных свойств грунтов и специфический характер взаимодействия сооружения с основа­нием определяют особенности проектирования фундаментов в условиях сейсмических воздействий.

В России принята 12-балльная шкала оценки силы землетря­сения. Вся территория России поделена на отдельные районы по сейсмичности, но даже в пределах одного района сейсмичность может быть различной в зависимости от грунтовых условий.

Во многих районах выполнено микросейсмирование (повышение или понижение сейсмичности на 1 балл, которое санкционируется Госстроем).

Сейсмичность площадки в зависимости от категории грунта приведена в табл. 5.1. Сейсмические воздействия при проектировании учитываются при интенсивности сейсмических колебаний 7, 8 и 9 баллов. При интенсивности более 9 баллов строительство возможно только по разрешению вышестоящих органов в соответствии с утвержденными требованиями.

По сейсмическим свойствам грунты разделяются на три категории:

I категория: скальные грунты всех видов (в том числе вечномерзлые и вечномерзлые оттаявшие); невыветрелые и слабовыветрелые; крупнообломочные грунты плотные маловлажные из магматических пород, содержащие до 30 % песчано-глинистого заполнителя; выветрелые и сильновыветрелые скальные и нескальные твердомерзлые (вечномерзлые) грунты при температуре – 2 0 С и ниже при строительстве и эксплуатации по принципу 1 (сохранение грунтов основания в мерзлом состоянии);

II категория: скальные грунты выветрелые и сильновыветрелые (в том числе, вечномерзлые, кроме отнесенных к I категории); крупно-обломочные грунты (за исключением отнесенных к I категории); пески гравелистые, крупные и средней крупности, плотные и средней плотности маловлажные и влажные; пески мелкие и пылеватые плотные и средней плотности маловлажные; глинистые грунты с показателем текучести IL £ 0,5 при коэффициенте пористости с 0 С при строительстве и эксплуатации по принципу 1;

НЕ ДЕЛАЙТЕ КЛАДКУ стен, пока не посмотрите это видео! Гидроизоляция фундамента

 

III категория: пески рыхлые независимо от влажности и крупности; пески гравелистые, крупные, средней крупности плотные и средней плотности водонасыщенные; пески мелкие и пылеватые плотные и средней плотности, влажные и водонасыщенные; глинистые грунты с показателем текучести IL 0,5; глинистые грунты с показателем текучести IL £ 0,5 при коэффициенте пористости е ³ 0,9 для глин и суглинков и е ³ 0,7 – для супесей; вечномерзлые нескальные грунты при строительстве и эксплуатации по принципу II (допущение оттаивания грунтов основания).

При неоднородном составе грунты площадки строительства относятся к более неблагоприятной категории грунта по сейсмическим свойствам, если в пределах 10-метровой толщи грунта (считая от планировочной отметки) слой, относящийся к этой категории, имеет суммарную толщину более 5 м.

Расчет фундаментных конструкций и их оснований выполняют на основное и особое сочетание нагрузок, причем в последнее обязательно включается сейсмическая нагрузка. Расчетную сейсми­ческую нагрузку получают в результате динамического расчета всего здания на колебания и прикладывают в точках расположения масс элементов конструкций.

При динамическом расчете учитывают массу отдельных элемен­тов здания, сейсмичность района, формы собственных колебаний, особенности колебаний сооружения, тип грунтовых условий, конст­руктивное решение сооружения и характер допускаемых поврежде­ний и дефектов. После получения сейсмических нагрузок на основа­нии принципа Даламбера проводят статический расчет конструкций здания в предположении совместного действия сейсмической и ста­тической нагрузки.

Дополнительные горизонтальные нормальные и касательные на­пряжения, возникающие в основании при прохождении сейсмичес­ких волн, определяют по формулам:

;. (5.10)

где kс – коэффициент сейсмичности (при 7 баллах kс = 0,025; при 8 баллах – 0,05 и при 9 баллах – 0,1); γ – удельный вес грунта; Сp и Сs – соответственно скорости распространения продольных и поперечных сейсмических волн; Т = 0,5 – период скорости сейс­мических колебаний, с.

Сейсмические инерционные нагрузки, действующие на фунда­мент во время землетрясения, определяют по формуле

(5.11)

где Gk – вес элемента сооружения, отнесенный к точке к; γn – ко­эффициент, зависящий от класса сооружения (принимается в преде­лах 1–1,5); – коэффициент динамичности; – коэффициент, учитывающий форму колебаний.

При проектировании и строительстве в сейсмических районах глубину заложения фундаментов в грунтах I и II категорий назнача­ют как для несейсмических районов, но не менее 1 м; грунты III категории требуют предварительного искусственного улучшения.

Фундаменты зданий и их отдельных отсеков рекомендуется за­кладывать на одном уровне во избежание изменения частоты со­бственных колебаний. В зданиях повышенной этажности следует увеличивать глубину заложения с помощью устройства дополни­тельных подземных этажей.

При прохождении сейсмических волн поверхность грунта может испытывать растяжение и сжатие в различных направлениях, что может вызвать подвижку фундаментов относительно друг друга, поэтому для исключения подвижки и устойчивости фундаментов рекомендуется возводить сплошные плитные фундаменты или не­прерывные фундаменты из перекрестных лент (рис. 5.3, а), устра­иваемых в сборном или монолитном варианте. Для усиления сбор­ных фундаментов по верху подушки укладывают арматурные сетки и устраивают перевязку блоков в углах и пересечениях, а при сейсмичности 9 баллов армируют все сопряжения стен подвалов. Фундаменты каркасных зданий допускается устанавливать на от­дельные фундаменты, которые соединяются друг с другом железо­бетонными вставками (рис. 5.3, б).

Для предотвращения подвижки здания по обрезу фундамента гид­роизоляцию стен необходимо выполнять в виде цементного слоя. Применение гидроизоляции на битумной основе не разрешается.

При использовании свайных фундаментов необходима жесткая заделка свай в непрерывный ростверк для восприятия горизон­тальных усилий, возникающих при землетрясениях, при этом следу­ет стремиться опирать нижние концы свай на плотные грунты. Влияние сейсмических воздействий на работу свайных фундаментов учитывают с помощью понижающих коэффициентов условий рабо­ты, при расчете несущей способности основания по боковой поверх­ности и под острием сваи.

Самыми неблагоприятными основаниями являются водонасыщенные пески, способные разжижаться в условиях сейсмических воздействий и приводить к провальным осадкам зданий, поэтому их следует использовать в качестве оснований только после предвари­тельного уплотнения вибрированием, песчаными сваями или каким-либо другим способом.

Проектирование и устройство фундаментов с учетом сейсмичес­ких воздействий гарантируют сохранность сооружения при условии, если и надземная часть здания возведена с учетом данных воздейст­вий.

READ  Кирпичный фундамент для дома плюсы и минусы

12.2.6. Сейсмостойкость свайных фундаментов (ч.1)

Область применения свайных фундаментов в сейсмических районах в основном та же, что и в несейсмических, т.е. свайные фундаменты в условиях сейсмики применяются в аналогичных грунтах и для тех же нагрузок на фундаменты, что и в несейсмических районах. Как и в статических условиях, для принятия окончательного варианта фундамента для сейсмических районов необходимо провести технико-экономическое сравнение вариантов.

При проектировании свайных фундаментов в сейсмических районах нижние концы свай следует опирать на скальные грунты, крупно-обломочные грунты, плотные и средней плотности песчаные грунты, твердые, полутвердые и тугопластичные глинистые грунты. Опирание нижних концов свай в сейсмических районах на рыхлые водонасыщенные пески, глинистые грунты мягкопластичной, текучепластичной и текучей консистенции не допускается.

Опирание свай на наклонные пласты скальных и крупнообломочных пород допускается в том случае, если устойчивость при сейсмических воздействиях массива грунта, расположенного на указанных породах, обеспечивается не за счет свайного фундамента и если при этом исключается возможность проскальзывания нижних концов свай. Допускается опирание свай на плотные и средней плотности водонасыщенные пески, при этом их несущая способность, как правило, должна определяться по результатам полевых испытаний свай на имитированные сейсмические воздействия.

Величина заглубления в грунт свай в сейсмических районах должна быть не менее 4 м, за исключением случаев их опирания на скальные грунты.

Набивные сваи в сейсмических районах следует устраивать в маловлажных устойчивых связных грунтах при диаметре свай не менее 40 см и отношении их длины к диаметру не более 25. При этом необходимо вести строгий контроль за качеством изготовления свай, гарантирующий точное соответствие их формы и размеров с проектом. Как исключение допускается прорезание слоев водонасыщенных грунтов с применением извлекаемых обсадных труб или глинистого раствора. В структурно-неустойчивых грунтах применять набивные сваи можно только с обсадными оставляемыми трубами. Армирование набивных свай в сейсмических районах является обязательным, при этом минимальный процент армирования должен приниматься равным 0,05.

При проектировании фундаментов из набивных свай в сейсмических районах предпочтение следует отдавать набивным сваям, при изготовлении которых в их основание втрамбовывают щебень, гравий, жесткий бетон и т.п.

Расчет свайных фундаментов зданий и сооружений с учетом сейсмических воздействий производится на особое сочетание нагрузок (включая сейсмическое воздействие) по предельному состоянию первой группы и предусматривает:

  • определение несущей способности свай на вертикальную нагрузку;
  • проверку свай по сопротивлению материала на совместное действие расчетных усилий: нормальной силы, изгибающего момента и перерезывающей силы;
  • проверку устойчивости сваи по условию ограничения давления, оказываемого на грунт боковыми поверхностями сваи.

Для фундаментов с высоким свайным ростверком расчетные значения сейсмических сил следует определять как для зданий или сооружений с гибкой нижней частью, увеличивая коэффициент динамичности βi (определяемый согласно требованиям главы СНиП II-7-81) в 1,5 раза, если период колебаний основного тона составляет 0,4 с и более. При этом значение коэффициента динамичности βi должно быть не более 3 и не менее 1,2.

Для свай-стоек несущая способность на действие вдавливающей нагрузки определяется так же, как и в условиях статики, без введения понижающих коэффициентов.

Несущая способность Ф p c забивной призматической и набивной сваи, работающей на осевую сжимающую нагрузку, с учетом сейсмических воздействий определяется по формуле

где γс — коэффициент условий работы сваи в грунте, принимаемый равным 1; R — расчетное сопротивление грунта под нижним концом сваи; Ap — площадь опирания на грунт сваи, принимаемая по площади поперечного сечения сваи брутто или по площади поперечного сечения камуфлетного уширения по его наибольшему диаметру; up — наружный периметр поперечного сечения сваи; It — расчетное сопротивление i.го слоя грунта основания па боковой поверхности сваи (учитывается, начиная с глубины HP; lpi — толщина i.го слоя грунта, соприкасающегося с боковой поверхностью; γeq, γeqi — коэффициенты условий работы, учитывающие влияние сейсмических колебаний на напряженное состояние грунта под нижним концом и на боковой поверхности сваи в i.м слое грунта (табл. 12.8); HP — глубина, до которой не учитывается сопротивление грунта на боковой поверхности сваи; — глубина погружения сваи в грунт; γR, γf — коэффициенты условий работы грунта соответственно под нижним концом и на боковой поверхности сваи, учитывающие влияние способа погружения или устройства свай на расчетные сопротивления грунта.

Глубина, до которой не учитывается сопротивление грунта на боковой поверхности сваи, определяется по формулам:

для набивной сваи ( HP принимается не боле ξ1/α1 )

12.2.6. Сейсмостойкость свайных фундаментов (ч.1)

Область применения свайных фундаментов в сейсмических районах в основном та же, что и в несейсмических, т.е. свайные фундаменты в условиях сейсмики применяются в аналогичных грунтах и для тех же нагрузок на фундаменты, что и в несейсмических районах. Как и в статических условиях, для принятия окончательного варианта фундамента для сейсмических районов необходимо провести технико-экономическое сравнение вариантов.

При проектировании свайных фундаментов в сейсмических районах нижние концы свай следует опирать на скальные грунты, крупно-обломочные грунты, плотные и средней плотности песчаные грунты, твердые, полутвердые и тугопластичные глинистые грунты. Опирание нижних концов свай в сейсмических районах на рыхлые водонасыщенные пески, глинистые грунты мягкопластичной, текучепластичной и текучей консистенции не допускается.

Опирание свай на наклонные пласты скальных и крупнообломочных пород допускается в том случае, если устойчивость при сейсмических воздействиях массива грунта, расположенного на указанных породах, обеспечивается не за счет свайного фундамента и если при этом исключается возможность проскальзывания нижних концов свай. Допускается опирание свай на плотные и средней плотности водонасыщенные пески, при этом их несущая способность, как правило, должна определяться по результатам полевых испытаний свай на имитированные сейсмические воздействия.

Величина заглубления в грунт свай в сейсмических районах должна быть не менее 4 м, за исключением случаев их опирания на скальные грунты.

Набивные сваи в сейсмических районах следует устраивать в маловлажных устойчивых связных грунтах при диаметре свай не менее 40 см и отношении их длины к диаметру не более 25. При этом необходимо вести строгий контроль за качеством изготовления свай, гарантирующий точное соответствие их формы и размеров с проектом. Как исключение допускается прорезание слоев водонасыщенных грунтов с применением извлекаемых обсадных труб или глинистого раствора. В структурно-неустойчивых грунтах применять набивные сваи можно только с обсадными оставляемыми трубами. Армирование набивных свай в сейсмических районах является обязательным, при этом минимальный процент армирования должен приниматься равным 0,05.

При проектировании фундаментов из набивных свай в сейсмических районах предпочтение следует отдавать набивным сваям, при изготовлении которых в их основание втрамбовывают щебень, гравий, жесткий бетон и т.п.

Расчет свайных фундаментов зданий и сооружений с учетом сейсмических воздействий производится на особое сочетание нагрузок (включая сейсмическое воздействие) по предельному состоянию первой группы и предусматривает:

  • определение несущей способности свай на вертикальную нагрузку;
  • проверку свай по сопротивлению материала на совместное действие расчетных усилий: нормальной силы, изгибающего момента и перерезывающей силы;
  • проверку устойчивости сваи по условию ограничения давления, оказываемого на грунт боковыми поверхностями сваи.

Для фундаментов с высоким свайным ростверком расчетные значения сейсмических сил следует определять как для зданий или сооружений с гибкой нижней частью, увеличивая коэффициент динамичности βi (определяемый согласно требованиям главы СНиП II-7-81) в 1,5 раза, если период колебаний основного тона составляет 0,4 с и более. При этом значение коэффициента динамичности βi должно быть не более 3 и не менее 1,2.

Для свай-стоек несущая способность на действие вдавливающей нагрузки определяется так же, как и в условиях статики, без введения понижающих коэффициентов.

Несущая способность Ф p c забивной призматической и набивной сваи, работающей на осевую сжимающую нагрузку, с учетом сейсмических воздействий определяется по формуле

где γс — коэффициент условий работы сваи в грунте, принимаемый равным 1; R — расчетное сопротивление грунта под нижним концом сваи; Ap — площадь опирания на грунт сваи, принимаемая по площади поперечного сечения сваи брутто или по площади поперечного сечения камуфлетного уширения по его наибольшему диаметру; up — наружный периметр поперечного сечения сваи; It — расчетное сопротивление i.го слоя грунта основания па боковой поверхности сваи (учитывается, начиная с глубины HP; lpi — толщина i.го слоя грунта, соприкасающегося с боковой поверхностью; γeq, γeqi — коэффициенты условий работы, учитывающие влияние сейсмических колебаний на напряженное состояние грунта под нижним концом и на боковой поверхности сваи в i.м слое грунта (табл. 12.8); HP — глубина, до которой не учитывается сопротивление грунта на боковой поверхности сваи; — глубина погружения сваи в грунт; γR, γf — коэффициенты условий работы грунта соответственно под нижним концом и на боковой поверхности сваи, учитывающие влияние способа погружения или устройства свай на расчетные сопротивления грунта.

Глубина, до которой не учитывается сопротивление грунта на боковой поверхности сваи, определяется по формулам:

для набивной сваи ( HP принимается не боле ξ1/α1 )

Фундаменты в условиях сейсмических воздействийОсобенности устройства фундаментов в сейсмических районах.

В России существует 12 бальная сейсмическая шкала. До семи бальная сейсмичность воспринимается обычными зданиями, сооружениями без принятия каких-либо дополнительных мер по усилению несущих конструкций.

Расчетной является сейсмичность в 7, 8, 9 баллов.

При сейсмичности свыше 9 баллов строительство не рекомендуется и только в исключительных случаях возможно при разработке специальных мероприятий.

Вся территория России поделена на отдельные районы по сейсмичности, но даже в пределах одного района сейсмичность может быть различной в зависимости от грунтовых условий.

Во многих районах выполнено микросейсмирование (повышение или понижение сейсмичности на 1 балл, которое санкционируется Госстроем).

Пример: Район с сейсмичностью 8 баллов.

ставить, блок, фундамент

При строительстве зданий необходимо:

  • Фундаменты сооружения закладывать на одной отметке (более равномерное распределение сейсмических сил).
  • Здание делить на отсеки.
  • Фундаменты делать монолитными или омоноличивать (перекрестные ленты, сплошные фундаменты).
  • Свайные фундаменты рассчитывать на горизонтальную нагрузку. При этом преимущество имеют сваи – стойки, а головы свай должны быть надежно заделаны в ростверк.

— коэффициент снижения несущей способности.

Расчёт фундаментов и оснований на сейсмические воздействия.

Расчёт оснований по несущей способности выполняется на действие вертикальной составляющей внецентренной нагрузки, передаваемой фундаментом

где вертикальная составляющая расчётной внецентренной нагрузки в особом сочетании; вертикальная составляющая силы предельного сопротивления основания при сейсмических воздействиях; сейсмический коэффициент условий работы; коэффициент надёжности по назначению сооружения.

Горизонтальная составляющая нагрузки учитывается при расчёте фундамента на сдвиг по подошве. Проверка на сдвиг по подошве производится с учётом трения подошвы фундамента о грунт, но с учётом сейсмического коэффициента условий работы

При расчёте несущей способности нескальных оснований, испытывающих сейсмические колебания, ординаты эпюры предельного давления по краям подошвы фундамента определяются по формуле:

где коэффициенты формы; коэффициенты несущей способности, зависящие от расчётного значения угла внутреннего трения; и соответственно расчётные значения удельного веса грунта, находящегося выше и ниже подошвы фундамента (с учётом взвешивающего действия подземных вод); глубина заложения фундаментов; коэффициент, принимаемый равным 0,1; 0,2; 0,4 при сейсмичности площадок строительства 7,8 и 9 баллов соответственно.

Эксцентриситеты расчётной нагрузки и эпюры предельного давления определяются по формулам

;

ставить, блок, фундамент

где вертикальная составляющая расчётной нагрузки и момент, приведённые к подошве фундамента при особом сочетании нагрузок. В зависимости от соотношения между величинами и вертикальная составляющая силы предельного сопротивления основания принимается:

при

при

где и размеры подошвы фундамента.

На подпорные стенки и стены подвальных помещений учитывают раздельно инерционное сейсмическое давление грунта и давление, вызванное изменением напряжённого состояния среды при прохождении в ней сейсмических волн.

Активное и пассивное давление грунта на подпорные стенки с учётом сейсмического воздействия

где коэффициент сейсмичности, принимаемый равным 0,025; 0,05; 0,1 соответственно при 7,8 и 9 баллах; угол внутреннего трения грунта при расчёте по устойчивости; соответственно активное и пассивное давления грунта при статическом состоянии.

Дополнительные горизонтальные нормальные и касательные напряжения, возникающие в грунте при прохождении сейсмических волн

где удельный вес грунта; скорости распространения продольных и поперечных сейсмических волн в грунте, определяемые экспериментально; преобладающий период сейсмических колебаний (обычно принимают с).

Сейсмические нагрузки прикладываемые к подпорной стенке как инерционные

где вес элемента сооружения, отнесённый к точке ; коэффициент, учитывающий допустимые повреждения зданий и сооружений; коэффициент, учитывающий конструктивные решения зданий и сооружений; – коэффициент демпфирования; коэффициент, зависящий от расчётной сейсмичности; коэффициент, соответствующий i-му тону собственных колебаний здания или сооружения; коэффициент, зависящий от формы деформации сооружения при его собственных колебаниях по i.му тону и от расстояния нагрузки до обреза фундамента.

Конструктивные особенности фундаментов.

Во избежание нарушения частоты собственных колебаний однородных конструкций фундаменты отдельного сооружения или отсека здания закладывают на одну и ту же глубину.

Для исключения подвижки здания по обрезу фундаментов гидроизоляцию стен выполняют из слоя цементного раствора. Применение битумной гидроизоляции не допускается.

Целесообразно колонны каркасных зданий располагать на сплошных фундаментных плитах, перекрёстных ленточных фундаментах или соединять фундамент и свайные ростверки вставками, которые исключают подвижку фундаментов относительно друг друга.

В сборных ленточных фундаментах под стены по их обрезу устраивают армированный пояс, работающий на растяжение.

В свайных фундаментах нижние концы свай опирают на плотные грунты. Непрерывный ростверк располагают на одной и той же глубине в каждом отдельном отсеке. Подпорные стенки не рекомендуется делать большой высоты.

Неблагоприятные грунты основания: пески рыхлые насыщенные водой, слабые пылевато-глинистые грунты в текучем и текучепластичном состоянии.

Проектирование гибких фундаментов. Общие сведенья. Основные теории расчета гибких фундаментов. Конструирование гибких фундаментов.

Гибкие сооружения, передавая нагрузку на основание, следуя за осадкой, которая может быть различна в каждой точке. При такой деформации в них не возникает практические никакие усилия разрушения. Такие сооружения имеют статически определенную схему. Гибкие могут быть фундаменты у которых отношение h/l

GORYCH.RU 2021